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The investigation of surface waves is of importance in many cluestions 
of theoretical and applied seismology. These problems have been con- 
sidered in many publications [l, 2,3.41 in which the necessary biblio- 
graphy is to be found. The most complete work in this direction.mono- 
graph [51, is devoted to the interference of surface waves and to appli- 
cations in various domains of seismology. 

In this paper we consider the problem of the vibrations of an elastic 
nonhomogeneous layer with a curvilinear boundary, lying on an elastic 
nonhomogeneous halfspace. In its precise analytical formulation this 
problem presents formidable mathematical difficulties. The paper is an 
attempt to solve, by an approximate method, a suitable reformulation of 
the exact problem, when the ratio of the wavelength to the thickness of 
the layer is small, that is to say when the ratio A/H << 1. 

The propagation of waves, under gravity, in a layer of fluid, has 
been investigated earlier M, using the same approximation. We shall 
consider below, using an analogous approximation. the problem of the 
vibrations of an elastic layer. under the hypothesis that the elastic 
state depends only on the portion of the nonhomogeneous layer with which 
it is in contact. 

1. Formulation of the problem. Consider an infinite nonhomo- 
geneous elastic layer (medium 2) lying on an elastic nonhomogeneous half 
space (medium 2). 

157 



158 L.B. Levitin, G.A. Skuridin and K.P. Staniukovich 

We shall suppose that the surface of the layer y(x) is given by 

Y = - H(x), where H(x) > 0 is a given function. 

Let the layer O> y >- H(x) have the Lam& constants h,, ul, and the 
density pl; and the elastic halfspace y >O have the Lam& constants h2, 
n2, and the density pz. ‘Ihe positive half of the y-axis is supposed to 
lie inside the halfspace (see Fig. I). 

We shall consider a special type of transverse elastic vibrations 
propagating in the xy-plane: 

22, = 0, U!/ = 0, uz = u (5, Y, 

In this case the equation of elastic vibrations 
the foxm 

4 (1.1, 

in both media has 

(1.2) 

In the absence of external forces on the surface of the layer and in 
the presence of elastic contact along the entire boundary y = 0, the 
following boundary conditions must hold: 

Lb, dH -- 
az dx + ;fM (2J=--f+)), UI = u,, (v = @) (1.3) 

Let us introduce a new dependent variable: v = oy where o is the 
frequency of the vibrations; equation 
(1.2) then takes the form 

‘Ihe boundary conditions (1.3) then be- 
come 

where we have set h(x) = o H (x) . 

We consider solutions of the equation (1.4) of the surface wave- 
vibrating layer O>y>- H(n) type, which die out quickly in the half- 
space y > 0. These solutions may be represented in the form 

u1 (2, v, t) = A (z, u, 0) COS [u (z) (27 + h)] ei”S(=*‘) (2.6) 

nz (x, n, t) = R (r, 27, w)&Wf@s(xJ) (P (x) 9) (1.7) 
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where, in view of their physical significance, a(n), p(x), S(x, t) are 
real valued functions; in what follows we shall suppose that S(x, t) E 

t - +I. 

2. Solution of the problem. We shall employ, for the solution of 
this problem, the asymptotic method, which is developed in [6,7,8]. Let 
us suppose that for o >> 1 the functions A(n, u, d and B(n, u, o) may 
lx represented by asymptotic series 

OS An (3: v) 
d (5, v, 0) - A, (4 + 2 A) B(s, v, o)- 

+ (W” 

Substituting (1.6) and (1.7) into equation (1.4)) taking into account 
(2. l), and equating to zero the coefficients of the powers of the fre- 
quency o, we obtain an infinite system of differential equations of the 
second order in the functions A,, and B,, and also three finite equations 
for the definition of the functions a(x), p(x), dyr(n)/dn (in view of the 
corresponding boundary conditions) (2.2) 

A,,, cos 51 (v + IL) - 2sA 1c sin a (v + k) = - { L4, cos Q (21 + h)V2q + 
-j- 2V9V [A, cos Q (v + h)] + A, cos 3 (7~ + h)V lnpIV$} (2.3) 

A,,, cos CL (v + 12) - 2xd ,,U sin =I (v + h) + A,_, cos a (v + II) [V2~ f 
+ V In plV$] + 2V$V [A,_, coszt (v + h)] =V In pIV[ A,_, cos r (v + It)] + 

-_I- v2 [ A,_* cm a (v + h)] (II> 1) (2.4) 

!N RL‘C - 2pB,U]e-fi0 + Blr_-le-@u [V2,1 + V In ~,VI#] + 2V$V [B,_,e-+] = 
= V In p2V [Bn+e-+] + V2 [B,_+e-a*] Oh > 1) (2.6) 

Here, and in what follows, the operator V denotes partial differ- 
entiation with respect to x, and it applies only to the first function 
written imnediately after it. Differentiation with respect to v is de- 
noted by a subscript. 

Analogously, one obtains the boundary conditions 

--II, = - AoV@7q, L4,, = - A,+VhV1C, + VA,_,Vh (u = -h (3)) (2.7) 

-10 cos ah = B(), A, cos ah = B,, A,,cosah = @B 
CL1 ?lv 

(v = 0) 
(2.8) 

B,e--PV --+ 0 as ~403 (2.9) 
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From equation (2.2) it follows that the eiconal yr(x) is defined up 

to an additive constant, and a sign, which influences only the phase of 

the vibrations. Subtracting the second equation of (2.2) from the first, 

we obtain 

From this it follows that surface waves of the type considered may 

exist only provided that 

k-E>O, or cZ > cJ 

where cl, c2 are the speeds of sound in medium 1 and medium 2, respec- 

tively. If pz > pl, then it follows necessarily that p > pl; that is, 

the upper layer must lie on a more rigid foundation [9 7 . The function 

p(x) determines the function a(x) uniquely, by means of the equation 

,y. tan&, = 112 If p1 p2 - - _ -- ($2 
CL1 PI 112 

From this equation it follows easily that, corresponding to the con- 

ditions 

there exists either one value a 2 (if the first condition holds) or there 

exist II different values a2 (if the second condition holds), correspond- 

ing to physically different vibrations. Integrating equation (2.3) we 

obtain 

A,, = 
1 

p1 co9 a (v $- h) s { 
cos u (v + h)V [plV (A,_, cos a (Y + h))] - 

--hW 

- _-!- V [ Aa,,_l co2 a (v + h) @#]} dv + 
c,* (4 

A co?3 a (v + h) 
(2.10) 

n-1 

&serving the second boundary condition (2.7), we obtain 

C,” (z) = - A,,_~ (2, - h (z))VhVq + VA,_2 (2,. - h (5)) Vh 

After a second integratinn, from (2.10) we obtain 
v 

A ’ n=E Cos~ci(V+h) . s 

1 fr4 

i\ { 
cos CL (v + h) V [pl V (A,, cos 01 (v + h))l- 

- 2 V [oAs,_i COP+' CC (U-Z) plO$] } do} do + $ [VA,-?: (Z, -h (s))VA - 
A n-1 

-A,+,(z,-h(z))VhV$]x[~a(u+h)--uhl+C,(z) (2.11) 
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Similarly, we may compute B,lr, ~1, From equation (2.6) we obtain 

According to the condition at infinity, (2.91, Dn* = 0. After a 

second integration, we obtain for B,(x) the expression 

B, = ~ies@{~{&V [&-~e--~~~p8V~] -e-fi”V [~~V(B,,e-P~)]}da}dv+ 

0 u 

+ & @) (2.13) 

'Ike recurrence relations (2.11) and (2.13) enable us to compute An 
and B,, for the higher order approximations. 

Let us now compute the arbitrary functions C,(x) and D,(X). From the 

second boundary condition 12.8) it follows that 

Ihus the boundary conditions for the nth-approximation do not deter- 

mine the functions Cs and Dn which, however, may be defined in terms of 

the functions of the next approximation. Indeed, the third condition 

(2.8) gives an equation for the computation of C,_1 and Dn_I* which re- 

main undetermined at the (n - 11th approximation. At the (n - 11th step 

the following functions are defined 

B 
Expressing Anv and B,V, for v z-0, in terms of A,_x, A,_2 and B,_,, 

respectively, by means of (2.14), and substituting these expres- 

s%$ into the third condition (2.81, we obtan 

0 

+& cos ah s 
{cm a (v + h) V [pzV (A,, cos a (v + h))] - (2.15) 

--h(x) 
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03 

x v L p2qJcoswl 
p1auaah + 1 SI -L 

0 %-I. 
V [J3n?.,e-2P”p2Wl - e--W7 [p, V (&+e-@“)I } &J 

Equation (2.15) is a linear differential equation of the first order 

which defines the function C, 1 
particular, for n = 1 we have- 

(x) up to an arbitrary constant K,,_,. In 

A0 tz) = co (+ = K,, [!fC$t (5 s + sin ti cos cry, + 4 )I-” (2.16) 

Integrating (2.15) we obtain 

c,+ = j$ [K,_, + f A, { 
ci 

f 
4 (X) 

{cos CL (u + h) v [plv [ An__2 cos a (0 + IL)]] - 

(2.17) 

In order to determine C,(x) one must satisfy the boundary conditions 

for the (n + 1)th approximation. 

Employing equations (2.11) and (2.13), we may obtain the first approxi- 

mations 

A, =- &-v { Ao2Y?] [(u+h)una(u+h)-hhdz]- 

- & A”V~VZ [(u + h)2 - h21 - &V~~Vh~ + Cl (4 (2.18) 

n, = - + B”V$vpu2 + -L v [ ““;“” 12’ -t ci (J) cos z/z 
2Bop2 

(2.19) 

where A, is given by equation (2.16)) and B, = A, cos ah. 

3. Remarks on the general character of the approximating 
functions. ‘Ilie computation of the functions of the second and of 

higher approximations, and even the function C,(x), lead to complicated 

expressions. Let us consider the general nature of the functions A,,(x,u) 

and R,(x, u). 

I et i)(k) (u) denote a general polynomial of degree m with respect to A \ 
V, with coefficients which are functions of x. From the preceding it 
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fol 1 ows that 

Bo = Qo(‘) (4, B1 = Qlt2) (v) 

Suppose that 

B n-1 = Qz;, Bn-2 = Q,,!!!2' 

Then, from (2.13) it follows readily that Rn = Qn(mt2). From this, 

Ly induction, it follows that each function Rn is a polynomial of 

degree 2n with respect to v 

B,, = Qnt2") = f$ %k (x) vk (3:l) 
k=n 

Analogously, it may be shown that 
(3.2) 

m-1 2n 

A,, = Pnc2+‘) UD c1 (V + h) + &,(‘“) = tan% (V + h) x a,,k(X) Vk + 2 6,,k (X) V’ 

k=o k=O 

where P_(2n-1) and Rmf2”) are polynomials in v degrees 2n - 1 and 2n; 

and the”functions o,,;(x), b,,,(x) and c,,,(x) are rational combinations 

of the functions 

A0 (x), a(x), P (4, Vg(x), h(x), p1 (4, pe (4, sin ah, cos ah 

and their derivatives. 

4. Geometrical optics of propagation of Love waves. The 
method employed for the expansion in powers of the large parameter o 

is essentially the method of short wave approximation, which is valid 

under the hypotheses that the thickness of the layer H(x) and the 

radius of curvature R of the surface layer are large with respect to 

the wavelength h 

The equations 

described by the 

v- .__ 
2n 

=- 
0 

‘$<II(x), h<R = !! +~($” 

of the bicharacteristics for the wave process which is 

equations (1.2) may be written [lo] 

dY m 
dr = p (2) pv ( 

= av (29 Y) aV (z, Y) p 
x al 9 P,= -ay 

1 

(4.1) 

where V(x, y) = t is the equation of the wave front. LSolving the system 
(4.1) we obtain the following formulas for the velocity components 
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The equations of the ray passing through a point (n,, ya) has the 

form 

where c(x) is the local speed of sound, a is an arbitrary constant with 

the physical dimensions of speed, and the condition C’(Z) < a2 \(a holds. 

When a2 = c2(xo), one has x = x,,, that is to say, the ray is vertical; 

while when a2 = 0~ one has y = yar that is to say, the ray is horizontal. 

Vertical and horizontal rays do not experience distortion. 

Love waves in medium 1 are the result of the superposition of the 

vibrations which are propagated along the rays (4.3)) and the resultant 

complete internal reflection of these rays on the upper and lower bound- 

ary surfaces of the layer. The requirement of complete internal reflec- 

tion on the boundary y = 0 restricts the possible trajectories which 

produce Love waves in medium I. ‘Ihe following condition must be satis- 
fied: 

sin 0 > cl (z) / c2 (z) (4.4) 

where the angle 0 is the angle of incidence of the ray. From this, as 

in the case of a medium with constant parameters [ll], one obtains again 

the condition c,(x) > cl(x). 

Further, suppose that a ray impinges on the plane y = 0 at the point 

x = ;“,. Then, along the ray the following inequslity must hold: _.-.- 
d;y ( ) cz (Xl) C? (Xl) 
dr szx, = 

,te<---- -- 
Cl (Xl) v 1 

c2 (Xl) 

From this and from (4.3) we obtain that all rays which are completely 

reflected internally at the point (xl, 01, satisfy the equations 

where a must satisfy the conditions within the parentheses. 

By ray of an example. we shall consider the waves generated by an 

isotropic linear source placed at the point (rO, yO). 
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Consider the vibrations on the surface layer f at the point (x1, 
-H(x*)). They are produced by a ray which passes directly from the point 

(X 0’ yo) to the point (xl, -H(x,)), by a ray which is reflected once 
from the lower boundary of the layer, by a ray which is reflected twice, 
once from the upper and once from the lower layer, and so forth (in Fig. 
2 several of these rays are dipicted; their distortion corresponds to 
the case in which cl(x) decreases monotonically as x increases). 

If the function H(x) is given explicitly, then one may calculate 
numerically, to an arbitrary degree of approximation, the vibration 
a point (x1, -H(x,)), merely by following successively the paths of 
first, second, . . . , of these rays. Of particular interest are the 
“direct” ray and the ray which is reflected once (at the point (~3, 

at 
the 

0)). 
The vibrations corresponding to them possess the largest amplitudes, and 
arrive at the point of observation earlier than the others, produced by 
the remaining rays. Formulas for these vibrations may be obtained ex- 
plicitly. 

We shall employ a method analogous to that used in [121. The equation 
of the ray joining the point (x0, yo) to the point (xl, -H(x,)) has the 
form (4.3). where the “minus” sign is taken in front of the integral, 
and the constant “a” is defined by the equation 

AI 

--H(q) =yyo- 
x, Vor,c:+) - i s (4.6) 

Consider the infinitely narrow cone 
of rays issuing from the point (xo,yo) 
within the angle dq. The energy flux 

,Y in this cone equals 

Fig. 2. 
(2’,-, (21) cl (~1) o”dT = 

P 

2T dq (4.71 

where da is the cross-section of the cone at the point, P is the linear 
strength of the source, and 0 is the amplitude at the point (x,, -H(x,)). 

Let us compute da/d? and substitute it in (4.7). We obtain 
(4.8) 

The phase shift is proportional to the frequency 
XI 

Acp=o - s adz 

X. 
cl* (r; )rua/ Cl’ (2) - 1 (4.9) 
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The ray which ia reflected at the point (x3. 0) is described, before 

reflection, by the equation 

x 

y=yo+x,~l#,c~(*,-* s 
and after reflection by the equations 

The constants b and x3 are defined b3 the equations: 

Besidee, the condition for complete internal reflection must 

satisfied 

(4.10) 

(4.11) 

(4.12) 

be 

Then the amplitude and the phase shift of the vibrations correspond- 

ing to this ray are given br formulas entirely analogous to (4.8) and 

(4.9). but with a replaced by b. 

If the lager 1 has constant thickness. H(x) = He, then the expressions 

already obtained may be generalized to an arbitrary number of reflections. 

Suppose that the raJ experiences 2n + 1 reflections. Then the amplitude 

and the phase are given by equations (4.8) and (4.9). where the constant 

a = og,,+l is given bg the equation 

In the case of an even number, 2n. of reflections, this equation 

takes the form 

Xl 

s dx 
(2g+l)Ho=-YO+ 

*r ,’ +a/ c?(z) - i 

(4.14) 

(4.15) 

Besides, at all points of reflection lying on the upper boundary one 

must have an inequality of the type of (4.13). 

5. Other methods of solution. For the solution of the problem 

under consideration, as well as for other problems, one may employ the 

original equation of the problem. In order to do this, let us transform 

the original equation 
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(5.1) 

where subscripts denote partial derivatives. Let us set n = x(e), where 
6 is a new independent variable, and then (1.2) takes the form 

(5.2) 

Further, put u = g-‘(6) ‘t’(a, y, t) and then (5.2) may be rewritten 
thus 

If one now puts P = T(t)?@, y) then we obtain the equation 

(5.4) 

Now, let us put T = T,,eiot , where, without loss of generality, we may 
suppose that TO = 1. Let us require further that 

p’ *. --__ 
v z’ 

2 E’ - 0 

E 
2$+-K ( L_$ 

E P ) ( + p_po x’4u’__o 
P )r, 1 

(5.51 

(5.6) 

where p,,, n,, are certain constant values of p and P. ‘lhen equation (5.4) 
becomes 

(5.7) 

Integrating (5.51, we obtain 

&A$ (A = coast) (5.6) 

Substituting the value of the difference (n’/n) - (x‘/x’> from (5.5) 
into (5.61, we obtain 

f” = (_+_ - _e) ,-pdE = (+ -2) -4g- (5.9) 
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Ihe functions u = u(n) and p = p(r) are given functions; returning 
frms the variable 6 anew to the variable z, equation (5.9) now takes the 
form 

while equation (5.8) becanes 

(5.10) 

(5.11) 

and equation (5.1), in turn, is converted into 

(PYV+(Pzx+w%=~Oa(p ( (5.52) 

Starting with p = p(x), u = p(r), we can obtain c = c(x) from (5.9), 
and then obtain F(x) from (5.12). Particular solutions of equation 
(5.12) may be obtained without difficulty. 

lhus we obtain, finally, particular solutions of equation (5.1) of 
the form 

u, = &%*n’ qn (2, y) (5.13) 

Knowing these particular solutions, we may construct a general solu- 
tion of equation (5.1) which satisfies the necessary initial and bound- 
ary conditions. 

Equation (5.4) may be transformed into a more convenient form. Let 

d=l, 5= 6, z$=_$ 

Then, putting c = A4 )I, equation (5.4) becomes 

(5.14) 

where 

1 
Ca=p P+&&+q=Q)(2) (5.1s) 

lhe general solution of equation (5.14) may now he obtained by the 
usual methods [13]. Let us consider, by an analogous method, snother 
class of solutions. Let 
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then equation (5.2) becomes 

Letting 

u’_++o, 
P 

&‘~+2$--K(L_$)=() 
e P 

one then has 

4 r_a = x1, 
45 

E”E3 = A9.3 

riiturning again to the variable x, we must have 

(5.18, 

(5.19) 

Given v = n( xf , we shall first find c = c(x) and then 6 =6(n). ‘Ihen 
equation (5.17) becomes 

‘pea =t .+ (p*t 
( 

1 - - $ .,a) 
G - (5.20) 

which may be solved easily. Let us note that, from a knowledge of 

p = p(4, CI = p(n), and 6 = 6(x) one may easily determine p = p(#) and 

CI = P(6). 

For particular approximations p(x) and p(x), the solution of equa- 
tions (5.14) and (5.20) may be simplified. For example, if one puts 
1-( = fax + b)2 and introduces the new function 

R=(axfb)u=-$4 (5.21) 

then equation (5.1) becomes 

The solution of this equation 
cated above, by transforming the 
ables. 

( 1 P P 64 ---= 
cz - P w t w ) (5.22) 

may be carried out by the methods indi- 
boundary conditions to the new vari- 

In conclusion, let us note that the characteritics of the f~d~ntal 
equation, and in particular, of equation (5. l), may be easily obtained 
if one puts 

11 = A (2, y, 1)eWW u. Q (5.23) 
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Then, inserting (5.23) into equation (5.1) and supposing that o - a, 

we arrive at 

jx2 + jv' I= $ j,2 (5.24) 

which is the equation of the wave fronts. 
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